
DesignCon 2016

Building IBIS-AMI Models

from Datasheet Specifications

Eugene Lim, Intel Corporation

Donald Telian, SiGuys

2

Abstract

Some high-speed SerDes devices do not come with IBIS-AMI models. For situations

when an AMI model is not available, this paper describes a process for building IBIS-

AMI models using SerDes datasheet information and lab measurements. The process is

illustrated using a case study of a PCIe Gen3 8 Gbps SerDes device by fine-tuning

template models to capture important behaviors. Stress tests and eye scans are used to

further tune and correlate model to actual hardware.

Author’s Biographies

Eugene Lim is hardware design engineer in NVM System Engineering group at Intel

Corporation. He is currently responsible for the group’s product DDR3/4, ONFI4 design

signal integrity and PCIe/SATA Signal Integrity Kits. Eugene received a BSEE and MSc

degrees from McGill University.

Donald Telian is an independent Signal Integrity Consultant. Building on over 30 years

of SI experience at Intel, Cadence, HP, and others, his recent focus has been on helping

customers correctly implement today’s Multi-Gigabit serial links. His numerous

published works on this and other topics are available at his website www.siguys.com.

Donald is widely known as the SI designer of the PCI bus and the originator of IBIS

modeling and has taught SI techniques to thousands of engineers in more than 15

countries.

3

Introduction

With the awareness and usefulness of IBIS-AMI analysis increasing, the demand for

IBIS-AMI models for any product with high speed SerDes designs follows. While many

SerDes designs have IBIS-AMI model delivery as part of the SerDes design process and

customer support, some SerDes designs do not. This occurs when SerDes vendors are not

yet up-to-speed with building AMI models, or SerDes design teams have moved on and

left behind only legacy SPICE models which are unsuitable for system-level signal

integrity simulations (see Appendix A).

This paper describes a process for building IBIS-AMI models from SerDes design

collateral such as SerDes datasheet, application notes and conference papers. The process

is illustrated with a model built and subsequently adapted and validated using lab data

extracted through a series of stress tests on actual hardware.

From a user perspective, AMI models enable powerful types of analyses not accessible

with other types of models. From a modeling perspective, AMI models allow complete

freedom of implementation when compared with typical IBIS model structures while still

protecting proprietary information. Recognizing that SerDes implement typical

equalization structures in both the Tx and Rx – such as FFE, DFE, and CTLE – many

simulation vendors offer AMI model templates that allow users to build their own AMI

models. This paper describes a process that makes use of such templates. Even though

IBIS-AMI modeling freed the model maker from supposed “restrictions” related to the

use of templates and the structures they assume, there remain advantages to the model

maker, simulation tool, and end user when a template can be used. The process described

is expected to work within most tool vendor’s AMI model templates.

4

AMI Model Development

While the paper describes building IBIS-AMI model for an 8 Gbps SerDes for PCIe

Gen3 application, this process can be applied to building IBIS-AMI model for other data

rates and applications.

SerDes Datasheet, application notes, and SPICE model user guides are main sources of

information as building blocks of the IBIS-AMI model. These building blocks were

applied to an AMI model template with the assistance of tool vendor application notes to

create an IBIS-AMI model that reflects the SerDes IP behavior.

Each block in the RX and TX models have certain parameters that define the

characteristics of the model. To distinguish these parameters, the model parameters are

denoted by the COURIER NEW font. While these parameters might be specific to the

tool vendor model template used, similar parameters can be found in other vendor’s

template models.

RX Model

A typical PCIe SerDes Rx frontend consists of the blocks shown in Figure 1. The input is

the pad of the SerDes, and the output drives the Rx latch after equalization.

Figure 1: Typical Rx Device Frontend

These blocks are also common to the RX AMI template model from a tool vendor. The

building blocks of one RX AMI template model [1] are shown in Figure 2.

Figure 2: Rx AMI Model Template Features

5

While the block names can be different between the model template and the actual

SerDes, the function of the blocks can help distinguish and link the blocks from SerDes

to Model and are mapped in Table 1 below.

Function SerDes Rx Frontend

Block Name

AMI Model Rx

Block name

Analog Front End AFE Analog Model

Attenuator/ Gain

Control

ATT AGC

Analog Boost/ CTLE CTLE Peaking Filter

Decision Feedback

Equalization

DFE DFE

Table 1: Mapping SerDes Block to Model Block

RX Analog Model Block

This section uses information from the SerDes datasheet to set the Rt (Receiver

Differential Impedance) and the Cc(Receiver Capacitance) parameters in the model. The

Rt parameter is the DC input differential termination in the datasheet and the Cc

parameter, if unavailable, can be based on a typical value for the SerDes technology and

fine-tuned using lab measurements.

RX AGC Block

For this block, model makers can typically use the SerDes’ gain/attenuator curves to set

the AGC parameter in the model. However, in this model the SerDes attenuator is used in

conjunction with the CTLE to ensure a certain voltage amplitude at the input to the DFE.

As such, the gain of the CTLE curves (gains parameters) is instead adapted to ensure a

constant gain at 4GHz. This allows the AGC parameter to be used as a static control for

overall amplitude provided to the DFE. This is described in more detail below.

RX Peak Filter Block

This block uses CLTE curve plots found in the SerDes app note to configure the CTLE of

the model. For the CTLE in the template model, the frequency response for each CTLE is

specified by the poles and zeros of a rational transfer function

peaking_filter.poles and peaking_filter.zeroes and DC gain. These

parameters specified in the continuous time domain (e.g. Hz), and the template model

converts to sampled data coefficients at run time. A typical peaking filter characteristic

family of curves is shown in Figure 3.

6

Figure 3: Typical Family of CTLE Curves

While it is possible to implement a peaking filter with curves as shown in Figure 3 (low-

frequency referenced to 0dB and positive gain at ~4 GHz), this option was not chosen.

Instead, the ~4GHz peak was attenuated to 0dB by manipulating the gains parameter.

This gave the peaking filter the same characteristics as the combined effect of

attenuation/CTLE in the device as well as the PCIe Specification [2]. The resulting

curves are shown at left in Figure 4, with the PCIe Specification shown at right. By

comparing these curves it can be seen that the model provides CTLE options beyond

those suggested by the specification.

Figure 4: CTLE Curves, Model and Specification

For the CTLE in the template model used for this study, the frequency response for each

CTLE curve is specified by the poles and zeros of a rational transfer function and the DC

gain ("gain"). These parameters are specified in the continuous time domain (e.g., Hz),

and the template model converts to sampled data coefficients at run time. Various

processes exist for deriving the correct poles and zeros, and it is also possible to manually

manipulate the placeholder values in the model to produce the desired curves.

Rx Saturation/ Amplitude Control

Challenges arise when the SerDes RX Frontend architecture differs from the AMI Model

template. One of the differences encountered in our case study was related to the red

feedback arrow in Figure 1, which exists in the device but not necessarily in the model.

The feedback exists to set the desired signal level at the input of the DFE within a 100

mV range to avoid saturation.

7

To model this behavior, the following sequence was used:

1. Use gains in Peaking Filter to adjust the peak of all CTLE curves to zero on the

Y dB axis

2. Adjust AGC value until outer eye height stayed in the correct amplitude range

across various system route lengths, with DFE off

3. Plot outer eye height vs length to confirm acceptability

4. If amplitude range is unacceptable, return to step 2. If acceptable, lock down AGC

value.

This process worked well and provided an AGC parameter that can be used to additionally

tune eye heights to match lab measurement.

One challenge of the process involved maintaining a consistent output amplitude range

versus changes in system loss and equalization. To examine this, Figure 5 shows the

amplitude (outer eye height) presented to the DFE after the combined AGC/CTLE model

versus channel lengths from 4” to 32” (on the X axis). With the AGC off (red) the

amplitude swings from 700mV to 250mV, while the amplitude is trained to stay in the

desired range with AGC=0.16 (blue). This is an excellent result, given the 8x variation in

channel length and (auto-selected) peaking filter variation (green, on the secondary Y

axis). Further testing shows the output amplitudes (blue) can be adjusted up and down

fairly linearly by adjusting the AGC value.

Figure 5: Amplitude at DFE vs AGC/CTLE/Channel Configuration

Rx DFE

An Rx DFE can be implemented in the model by selecting the proper number of taps and

coding any saturation, non-linearity, etc. parameters the template might provide. While

implementing a DFE in silicon can be complex, it is typically straightforward to

implement in an algorithmic model.

Rx Jitter

Rx jitter can be added to the model using template appropriate syntiax and typical values

shown below. These values should be consistent with published Tj (Total Jitter) values,

which may or may not be broken down in the datasheet into lower-level jitter contributors

8

(e.g., Dj, Rj). However once the jitter parameters are coded into the model, they can be

fine-tuned using lab measurements. Note that the _Clock_Recovery_ versions of the Rx

jitter parameters are used, as these can simplify BER calibration. When specifying Rj, be

sure to clarify if your template expects a peak-to-peak or rms value. For a BER of 10e-

12, Rj_pp = 14.069*Rj_rms.

 (Rx_Clock_Recovery_Dj (Value 0.040)(Usage Info)(Type UI))

 (Rx_Clock_Recovery_Rj (Value 0.008)(Usage Info)(Type UI))

 (Rx_Clock_Recovery_DCD (Value 0.015)(Usage Info)(Type UI))

TX Model

The device Tx contains an analog portion (AFE) and a multi-tap FIR filter with numerous

presets, as shown in Figure 6.

Figure 6: Typical Tx Device Blocks

Tx Analog Model Block

Similar to the RX analog model block, the information from the SerDes datasheet is used

to configure the Rs (Transmitter Impedance), Trf (Rise/Fall Time), and tx_swing

(Differential Voltage Swing) parameters in the AMI model. The Cc (Transmitter

Capacitance) parameter in the AMI model can be based on a typical value for the SerDes

technology and further using during lab measurement.

Tx FIR block

Tx equalization is straightforward to implement in an algorithmic model. PCIe Tx

equalization includes one pre-cursor, one post-cursor, and a main-cursor that can reduce

to 2/3 of its full value. The post-cursor can provide de-emphasis up to 1/3 of the main-

cursor voltage, while the pre-cursor can provide up to ~24% of pre-shoot. The

granularity of adjustment and the requirement that the absolute value of all taps sums to

1.0 results in more than 200 setting options. This range and relationship is similar to that

shown in the PCIe Specification [2], shown in Figure 7.

9

Figure 7: PCIe TxEQ Coefficient Space Matrix

Labels in the Tx .ami file can specify the amount of Preshoot and De-emphasis provided

by each setting. Furthermore, certain discrete settings correspond to the PCIe-specified

“Presets” P0-P9 [2, Table 4-16].

The presets were developed using a spreadsheet supplied by the SerDes vendor, by

manipulating equations and text to create the correct syntax in the .ami file. Though this

is a fairly large number of presets, syntax and constructs in the model made the process

manageable.

Tx Jitter

Tx jitter can be added to the model using template appropriate syntax and typical values

shown below. These values should be consistent with datasheet Tj (Total Jitter) values.

Once the jitter parameters are added to the model they can be fine-tuned using common

measurements, as demonstrated in the Lab Measurements section below.

 (Tx_Dj (Value 0.04)(Usage Info)(Type UI))

 (Tx_Rj (Value 0.008)(Usage Info)(Type UI))

 (Tx_DCD (Value 0.015)(Usage Info)(Type UI))

10

Lab Measurement and Correlation

Tx Correlation

In the realm of SerDes model correlation, much has been done and published regarding

the Tx portion of the SerDes. As such, this paper will focus on the challenges of Rx

model correlation while lightly touching on Tx correlation here.

For Tx correlation, the silicon models and measurement methods are fairly well-

established and typically yield good correlation. To prove this point, the first correlation

performed on the Tx model yielded the results in Table 2. As shown, prior to adapting

the Tx model in any way, the model correlates to measurement to within 5% for all

parameters – with the model typically on the conservative side, as desired. As additional

measurements are made, the jitter can easily be adapted using the Tx_Dj and Tx_Rj

parameters in the model.

Table 2: Simulated vs Measured Tx Parameters

Figure 9 shows the waveforms from which the measurements in Table 2 were derived,

simulated (left) and measured (right).

Figure 9: Tx Waveforms, Simulated and Measured

Rx Correlation

The Bit Error Rate Tester (BERT) is used commonly to test and characterize high speed

serial interfaces. The BERT allows user to control composition of jitter (RJ, SJ, PJ, ISI..

etc), vertical noise interference and transmitter amplitude to create a variety of stress

conditions to characterize a high speed serial device’s Rx. To characterize the device

under test (DUT), a serial bit pattern is sent to the DUT, the DUT SerDes will recover the

data and loopback the pattern to the BERT. If the SerDes fails to recover the pattern

correctly, the BERT will detect the pattern mismatch and log as bit error. This type of

testing is essential as it does not require probing on the high-speed serial interface that is

sensitive to any additional capacitive loading.

Tx Parameter Simulated Measured Unit Delta

Eye Height 317 334 mV 5%

Eye Width 91 94 pS 3%

Dj 0.16 0.18 UI -2%

Rj 0.024 0.016 UI 1%

11

The BERT used has the knobs shown in Figure 10 to inject controlled impairment to

perform a series of stress tests.

Figure 10: BERT-controlled Impairments

Table 3 shows a summary of tests by adjusting BERT knobs and behavior measured.

Stress Test BERT Knobs Behavior Measured

Jitter Tolerance High Frequency

SJ

Eye timing margin

Clock Recovery Bandwidth

Interference Injection Diff Mode Eye Voltage Margin

Data path gain vs Frequency

Receiver Noise Figure

Receiver Sensitivity Signal Amplitude Minimum Latch Overdrive

Table 3: Stress Tests to Measure Rx Behaviors

The following series of stress tests have been identified to provide more accurate insight

to SerDes performance and the results are used to fine-tune and confirm key parameters

used in the Rx AMI model.

Rx Jitter Tolerance

Jitter Tolerance is the most used stress test method commonly found in different high

speed serial interface protocol (PCIe, SATA, SAS, etc.), and produces results similar to

Figure 11. A controlled sinusoidal jitter (Sj) is introduced into the transmitter clock and

that sinusoidal jitter is increased in amplitude (green) until a specified bit error rate is

reached (red). This procedure is repeated over a range of sinusoidal frequencies to

produce an RX jitter tolerance plot.

Figure 11: Jitter Tolerance Test Results

12

At lower jitter frequencies, the receiver’s clock recovery loop tracks the jitter. However,

as the frequency increases, the clock recovery loop tracking error increases. Beyond a

certain frequency, the clock recovery loop has very little effect on jitter introduced into

the data detection process. The timing margin for the measured bit error rate is the value

where the curve flattens out. The knee of the curve is an indication of the clock recovery

loop bandwidth.

Figure 12 stresses the model with Sj of increasing frequency and plots the deterioration of

eye width. Note that the knee frequency is similar to that measured in Figure 10. In the

model the knee frequency is varied using parameters clock_recovery.step,

(recovered clock phase step size) and clock_recovery.count (early or late count

to trigger a phase step) to adjust the loop bandwidth. A larger step size or smaller count

value speeds up the clock recovery loop [1][5].

Figure 12: Model’s Response to Sj Frequency

By manipulating the Rx sensitivity and clock recovery jitter parameters in the (Rj, Dj, Sj,

and DCD) it is possible to map the eye widths in Figure 12 to measured BERs, enhancing

the correlation of Figures 11 and 12. This mapping is partially described in [4] and is a

subject of on-going research by the authors.

Interference Injection

The Interference Injection stress test couples a differential mode voltage noise onto the

test pattern signal to characterize the vertical voltage margin and datapath gain response.

The differential voltage noise is increased until a specified BER is reached and this is

repeated over a range of frequencies. The process can be thought of as the voltage

counterpart of the Jitter Tolerance stress test mentioned in the previous section.

From the lab measurement results in Figure 13, the datapath gain variation vs. frequency

can observed. The datapath gain is inversely proportional to the differential noise

amplitude. The injected differential noise frequency range is limited due to the range of

the test equipment. The model’s CTLE curves in Figure 4 is shown inset with injected

noise frequency range highlighted in grey. The behavior model’s CTLE curve can be

seen to be the inverse of the differential noise response. Future work to further investigate

the datapath and receiver decision frequency response is to use a RF signal generator with

13

broadband directional coupler by using a broadband coupler to increase differential noise

frequency range and implement varying channel lengths to observe the effect on datapath

gain response. The expected trend is as channel length increases, data path gain increased

as shown in green in Figure 13.

Figure 13: Interference Injection Plot

Receiver Sensitivity

The bit error rate is a very sensitive function of the transmit amplitude. A 1dB reduction

in the transmitter amplitude can increase the Bit error rate many orders of magnitude. The

BERT can provide a wide range of differential input to the receiver. This is useful in

measuring the receiver sensitivity. If the rise/fall time of the transmitter is much smaller

than the unit interval of the data and the channel has relatively low distortion, then the

eye diagram at the receiver decision point will have a lot of timing margin, making the bit

error rate insensitive to phase noise in recovered clock. However, when this is not true

the bit error rate becomes very sensitive to the difference between the signal amplitude

and the minimum latch overdrive. Therefore, the amplitude at which the signal changes

abruptly will be an accurate measure of the receiver sensitivity. The AMI model’s

Rx_Receiver_Sensitivity (Receiver Sensitivity) parameter can be configured

based on lab data measured in Table 4.

Tx Amplitude (mV) BER Measured

900 0

800 0

… 0

200 0

150 1e-12

140 8e-12

14

130 2e-11

120 5e-2

110 2e-2

100 1e-2

Table 4: Rx Sensitivity Measurement

While the values in Table 4 demonstrate the anticipated abrupt change in BER versus

amplitude applied, the voltage drop related to losses in the measurement path must be

subtracted to derive the correct values for Rx Sensitivity in the model. As the AMI

model is representative of die behavior, this de-embedding process should also include

losses in the device’s package parasitics. If the de-embedding cannot be performed

directly within the measurement equipment, the process can fairly easily be done using

simulation. After de-embedding, Rx Sensitivity values commonly range from 5mV to

40mV.

Summary

This paper has demonstrated a process for developing an AMI model of an advanced

SerDes device using datasheet specifications and available templates. The resulting

model is tuned to match silicon behavior using both simulation and measurement. The

paper has shown a typical model development scenario, demonstrating common issues

and appropriate solutions. As the IBIS Specification [6] does not currently specify

standardized syntax for all common SerDes AMI model parameters, it is important to

adapt the parameters shown to use syntax appropriate for unique template suppliers.

Once done, an accurate AMI model can be created for SerDes’ implementing common

forms of equalization.

15

Acknowledgments

The authors wish to thank Cliff Jeske of Intel for his commitment to advanced SerDes

simulation. Additional thanks goes to Todd Bermensolo and Aleksey Tyshchenko of

Intel for reviewing this material, and Barry Katz and Michael Steinberger of SiSoft for

their assistance in creating AMI models from templates and measurements.

References

[1] “SiSoft_Application_Note_Configuration_of_Advanced_Tx_and_Rx_Models”,

available at SiSoft’s Support website. www.sisoft.com

[2] “PCI Express® Base Specification Revision 3.0” November 10, 2010,

www.pcisig.org

[3] “Introducing Channel Analysis for PCB Systems” Telian, slide 28

http://www.siguys.com/resources/2004_Webinar_Introducing_Channel_Analysis.pdf

[4] “Moving Higher Data Rate Serial Links into Production – Issues & Solutions”

Telian, Camerlo, Matta, Steinberger, Katz, Katz, DesignCon 2014 Best Paper
http://www.siguys.com/resources/2014_DesignCon_MovingToHigherDataRates_paper.pdf

[5] “Studying Clock Recovery Performance using IBIS-AMI Models” Katz, Steinberger,

DesignCon 2011

http://www.sisoft.com/elearning/secure/files/ClockRecovery_DesignCon2011.pdf

[6] IBIS Specifications at https://ibis.org/specs/

http://www.sisoft.com/
http://www.pcisig.org/
http://www.siguys.com/resources/2004_Webinar_Introducing_Channel_Analysis.pdf
http://www.siguys.com/resources/2014_DesignCon_MovingToHigherDataRates_paper.pdf
http://www.sisoft.com/elearning/secure/files/ClockRecovery_DesignCon2011.pdf
https://ibis.org/specs/

16

Appendix A: AMI versus SPICE Analysis

For the reader unfamiliar with the reasons why use and availability of AMI models is

increasing, this section provides explanation. The following are a few reasons for using

IBIS-AMI models instead of SPICE models for full channel system signal integrity

analysis.

1) SPICE models simulate slowly. Transistor-level models are known to be ~10,000

times slower than AMI models for Time-Domain analysis [3] and many orders of

magnitude slower for Statistical analysis. This difference is one of the reasons why

AMI modeling was developed, because it enabled a more complete and robust

analysis process due to its ability to process bit-streams in excess of one million bits

in a reasonable amount of time.

2) SPICE models do not capture the complete details of the SerDes. Specifically, the Rx

DFE is often missing. This is typical of silicon-level models, as too many transistors

are required to implement the complete behavior of a DFE.

3) SPICE models are usually encrypted. This makes it difficult to adapt or configure the

model correctly. Furthermore, global and model-level parameters cause conflicts that

can cause simulation to crash or become unstable.

4) SPICE models are overly complex. This complexity can cause unnecessary support

from both the model provider and user which results in time and resource overhead

from both parties. As design cycle becomes shorter, this can easily become a bottle

neck in the design.

5) SI tools prefer AMI models. Although system-level SI tools often provide ways to

interface with SPICE models - for the reasons stated above - such interfaces are not

the primary, optimal, and best-supported way to use the tools.

