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Abstract 

Some high-speed SerDes devices do not come with IBIS-AMI models. For situations 

when an AMI model is not available, this paper describes a process for building IBIS-

AMI models using SerDes datasheet information and lab measurements. The process is 

illustrated using a case study of a PCIe Gen3 8 Gbps SerDes device by fine-tuning 

template models to capture important behaviors. Stress tests and eye scans are used to 

further tune and correlate model to actual hardware. 
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Introduction 

With the awareness and usefulness of IBIS-AMI analysis increasing, the demand for 

IBIS-AMI models for any product with high speed SerDes designs follows. While many 

SerDes designs have IBIS-AMI model delivery as part of the SerDes design process and 

customer support, some SerDes designs do not. This occurs when SerDes vendors are not 

yet up-to-speed with building AMI models, or SerDes design teams have moved on and 

left behind only legacy SPICE models which are unsuitable for system-level signal 

integrity simulations (see Appendix A).  

 

This paper describes a process for building IBIS-AMI models from SerDes design 

collateral such as SerDes datasheet, application notes and conference papers. The process 

is illustrated with a model built and subsequently adapted and validated using lab data 

extracted through a series of stress tests on actual hardware. 

 

From a user perspective, AMI models enable powerful types of analyses not accessible 

with other types of models.  From a modeling perspective, AMI models allow complete 

freedom of implementation when compared with typical IBIS model structures while still 

protecting proprietary information.  Recognizing that SerDes implement typical 

equalization structures in both the Tx and Rx – such as FFE, DFE, and CTLE – many 

simulation vendors offer AMI model templates that allow users to build their own AMI 

models.  This paper describes a process that makes use of such templates.  Even though 

IBIS-AMI modeling freed the model maker from supposed “restrictions” related to the 

use of templates and the structures they assume, there remain advantages to the model 

maker, simulation tool, and end user when a template can be used.  The process described 

is expected to work within most tool vendor’s AMI model templates. 
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AMI Model Development 

While the paper describes building IBIS-AMI model for an 8 Gbps SerDes for PCIe 

Gen3 application, this process can be applied to building IBIS-AMI model for other data 

rates and applications.  

 

SerDes Datasheet, application notes, and SPICE model user guides are main sources of 

information as building blocks of the IBIS-AMI model. These building blocks were 

applied to an AMI model template with the assistance of tool vendor application notes to 

create an IBIS-AMI model that reflects the SerDes IP behavior. 

 

Each block in the RX and TX models have certain parameters that define the 

characteristics of the model. To distinguish these parameters, the model parameters are 

denoted by the COURIER NEW font. While these parameters might be specific to the 

tool vendor model template used, similar parameters can be found in other vendor’s 

template models. 

 

RX Model 

A typical PCIe SerDes Rx frontend consists of the blocks shown in Figure 1.  The input is 

the pad of the SerDes, and the output drives the Rx latch after equalization. 

 

 

Figure 1:  Typical Rx Device Frontend 

 

These blocks are also common to the RX AMI template model from a tool vendor. The 

building blocks of one RX AMI template model [1] are shown in Figure 2. 

 

 
Figure 2:  Rx AMI Model Template Features 
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While the block names can be different between the model template and the actual 

SerDes, the function of the blocks can help distinguish and link the blocks from SerDes 

to Model and are mapped in Table 1 below. 

 

Function SerDes Rx Frontend 

Block Name 

AMI Model Rx 

Block name 

Analog Front End AFE Analog Model 

Attenuator/ Gain 

Control 

ATT AGC 

Analog Boost/ CTLE CTLE Peaking Filter 

Decision Feedback 

Equalization 

DFE DFE 

Table 1:  Mapping SerDes Block to Model Block 

 

RX Analog Model Block 

This section uses information from the SerDes datasheet to set the Rt (Receiver 

Differential Impedance) and the Cc(Receiver Capacitance) parameters in the model. The 

Rt parameter is the DC input differential termination in the datasheet and the Cc 

parameter, if unavailable, can be based on a typical value for the SerDes technology and 

fine-tuned using lab measurements. 

 

RX AGC Block 

For this block, model makers can typically use the SerDes’ gain/attenuator curves to set 

the AGC parameter in the model.  However, in this model the SerDes attenuator is used in 

conjunction with the CTLE to ensure a certain voltage amplitude at the input to the DFE.  

As such, the gain of the CTLE curves (gains parameters) is instead adapted to ensure a 

constant gain at 4GHz. This allows the AGC parameter to be used as a static control for 

overall amplitude provided to the DFE.  This is described in more detail below.  

 

RX Peak Filter Block 

This block uses CLTE curve plots found in the SerDes app note to configure the CTLE of 

the model. For the CTLE in the template model, the frequency response for each CTLE is 

specified by the poles and zeros of a rational transfer function 

peaking_filter.poles and peaking_filter.zeroes and DC gain. These 

parameters specified in the continuous time domain (e.g. Hz), and the template model 

converts to sampled data coefficients at run time. A typical peaking filter characteristic 

family of curves is shown in Figure 3. 
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Figure 3:  Typical Family of CTLE Curves 

 

While it is possible to implement a peaking filter with curves as shown in Figure 3 (low-

frequency referenced to 0dB and positive gain at ~4 GHz), this option was not chosen.  

Instead, the ~4GHz peak was attenuated to 0dB by manipulating the gains parameter. 

This gave the peaking filter the same characteristics as the combined effect of 

attenuation/CTLE in the device as well as the PCIe Specification [2].  The resulting 

curves are shown at left in Figure 4, with the PCIe Specification shown at right.  By 

comparing these curves it can be seen that the model provides CTLE options beyond 

those suggested by the specification. 

 

 
Figure 4:  CTLE Curves, Model and Specification 

 

For the CTLE in the template model used for this study, the frequency response for each 

CTLE curve is specified by the poles and zeros of a rational transfer function and the DC 

gain ("gain"). These parameters are specified in the continuous time domain (e.g., Hz), 

and the template model converts to sampled data coefficients at run time.  Various 

processes exist for deriving the correct poles and zeros, and it is also possible to manually 

manipulate the placeholder values in the model to produce the desired curves. 

 

Rx Saturation/ Amplitude Control 

Challenges arise when the SerDes RX Frontend architecture differs from the AMI Model 

template. One of the differences encountered in our case study was related to the red 

feedback arrow in Figure 1, which exists in the device but not necessarily in the model.  

The feedback exists to set the desired signal level at the input of the DFE within a 100 

mV range to avoid saturation.  
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To model this behavior, the following sequence was used: 

 

1. Use gains in Peaking Filter to adjust the peak of all CTLE curves to zero on the 

Y dB axis 

2. Adjust AGC value until outer eye height stayed in the correct amplitude range 

across various system route lengths, with DFE off 

3. Plot outer eye height vs length to confirm acceptability 

4. If amplitude range is unacceptable, return to step 2.  If acceptable, lock down AGC 

value. 

 

This process worked well and provided an AGC parameter that can be used to additionally 

tune eye heights to match lab measurement. 

 

One challenge of the process involved maintaining a consistent output amplitude range 

versus changes in system loss and equalization.  To examine this, Figure 5 shows the 

amplitude (outer eye height) presented to the DFE after the combined AGC/CTLE model 

versus channel lengths from 4” to 32” (on the X axis).  With the AGC off (red) the 

amplitude swings from 700mV to 250mV, while the amplitude is trained to stay in the 

desired range with AGC=0.16 (blue).  This is an excellent result, given the 8x variation in 

channel length and (auto-selected) peaking filter variation (green, on the secondary Y 

axis).  Further testing shows the output amplitudes (blue) can be adjusted up and down 

fairly linearly by adjusting the AGC value. 

 

 
Figure 5:  Amplitude at DFE vs AGC/CTLE/Channel Configuration 

 

Rx DFE 

An Rx DFE can be implemented in the model by selecting the proper number of taps and 

coding any saturation, non-linearity, etc. parameters the template might provide.  While 

implementing a DFE in silicon can be complex, it is typically straightforward to 

implement in an algorithmic model. 

 

Rx Jitter 

Rx jitter can be added to the model using template appropriate  syntiax and typical values 

shown below.  These values should be consistent with published Tj (Total Jitter) values, 

which may or may not be broken down in the datasheet into lower-level jitter contributors 
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(e.g., Dj, Rj).  However once the jitter parameters are coded into the model, they can be 

fine-tuned using lab measurements.  Note that the _Clock_Recovery_ versions of the Rx 

jitter parameters are used, as these can simplify BER calibration.  When specifying Rj, be 

sure to clarify if your template expects a peak-to-peak or rms value.  For a BER of 10e-

12, Rj_pp = 14.069*Rj_rms. 

 
      (Rx_Clock_Recovery_Dj    (Value 0.040)(Usage Info)(Type UI)) 

      (Rx_Clock_Recovery_Rj    (Value 0.008)(Usage Info)(Type UI)) 

      (Rx_Clock_Recovery_DCD   (Value 0.015)(Usage Info)(Type UI)) 

 

TX Model 

The device Tx contains an analog portion (AFE) and a multi-tap FIR filter with numerous 

presets, as shown in Figure 6.  

  

 
Figure 6:  Typical Tx Device Blocks 

 

Tx Analog Model Block 

Similar to the RX analog model block, the information from the SerDes datasheet is used 

to configure the Rs (Transmitter Impedance), Trf (Rise/Fall Time), and tx_swing 

(Differential Voltage Swing) parameters in the AMI model. The Cc (Transmitter 

Capacitance) parameter in the AMI model can be based on a typical value for the SerDes 

technology and further using during lab measurement. 

  

Tx FIR block 

Tx equalization is straightforward to implement in an algorithmic model.  PCIe Tx 

equalization includes one pre-cursor, one post-cursor, and a main-cursor that can reduce 

to 2/3 of its full value.  The post-cursor can provide de-emphasis up to 1/3 of the main-

cursor voltage, while the pre-cursor can provide up to ~24% of pre-shoot.  The 

granularity of adjustment and the requirement that the absolute value of all taps sums to 

1.0 results in more than 200 setting options.  This range and relationship is similar to that 

shown in the PCIe Specification [2], shown in Figure 7. 
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Figure 7:  PCIe TxEQ Coefficient Space Matrix 

 

Labels in the Tx .ami file can specify the amount of Preshoot and De-emphasis provided 

by each setting.  Furthermore, certain discrete settings correspond to the PCIe-specified 

“Presets” P0-P9 [2, Table 4-16]. 

 

The presets were developed using a spreadsheet supplied by the SerDes vendor, by 

manipulating equations and text to create the correct syntax in the .ami file.  Though this 

is a fairly large number of presets, syntax and constructs in the model made the process 

manageable.   

 

Tx Jitter 

Tx jitter can be added to the model using template appropriate syntax and typical values 

shown below.  These values should be consistent with datasheet Tj (Total Jitter) values.  

Once the jitter parameters are added to the model they can be fine-tuned using common 

measurements, as demonstrated in the Lab Measurements section below.   

 
      (Tx_Dj           (Value 0.04)(Usage Info)(Type UI)) 

      (Tx_Rj           (Value 0.008)(Usage Info)(Type UI)) 

      (Tx_DCD          (Value 0.015)(Usage Info)(Type UI)) 
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Lab Measurement and Correlation 

Tx Correlation 

In the realm of SerDes model correlation, much has been done and published regarding 

the Tx portion of the SerDes.  As such, this paper will focus on the challenges of Rx 

model correlation while lightly touching on Tx correlation here. 

 

For Tx correlation, the silicon models and measurement methods are fairly well-

established and typically yield good correlation.  To prove this point, the first correlation 

performed on the Tx model yielded the results in Table 2.  As shown, prior to adapting 

the Tx model in any way, the model correlates to measurement to within 5% for all 

parameters – with the model typically on the conservative side, as desired.  As additional 

measurements are made, the jitter can easily be adapted using the Tx_Dj and Tx_Rj 

parameters in the model. 

 

 
Table 2:  Simulated vs Measured Tx Parameters 

 

Figure 9 shows the waveforms from which the measurements in Table 2 were derived, 

simulated (left) and measured (right). 

 

    
Figure 9:  Tx Waveforms, Simulated and Measured 

 

Rx Correlation 

The Bit Error Rate Tester (BERT) is used commonly to test and characterize high speed 

serial interfaces. The BERT allows user to control composition of jitter (RJ, SJ, PJ, ISI.. 

etc), vertical noise interference and transmitter amplitude to create a variety of stress 

conditions to characterize a high speed serial device’s Rx. To characterize the device 

under test (DUT), a serial bit pattern is sent to the DUT, the DUT SerDes will recover the 

data and loopback the pattern to the BERT. If the SerDes fails to recover the pattern 

correctly, the BERT will detect the pattern mismatch and log as bit error. This type of 

testing is essential as it does not require probing on the high-speed serial interface that is 

sensitive to any additional capacitive loading. 

Tx Parameter Simulated Measured Unit Delta

Eye Height 317 334 mV 5%

Eye Width 91 94 pS 3%

Dj 0.16 0.18 UI -2%

Rj 0.024 0.016 UI 1%
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The BERT used has the knobs shown in Figure 10 to inject controlled impairment to 

perform a series of stress tests.  

 

 
Figure 10:  BERT-controlled Impairments 

 

Table 3 shows a summary of tests by adjusting BERT knobs and behavior measured.  

 

Stress Test BERT Knobs Behavior Measured 

Jitter Tolerance High Frequency 

SJ 

Eye timing margin 

Clock Recovery Bandwidth 

Interference Injection Diff Mode Eye Voltage Margin 

Data path gain vs Frequency 

Receiver Noise Figure 

Receiver Sensitivity Signal Amplitude Minimum Latch Overdrive 

Table 3:  Stress Tests to Measure Rx Behaviors 

 

The following series of stress tests have been identified to provide more accurate insight 

to SerDes performance and the results are used to fine-tune and confirm key parameters 

used in the Rx AMI model. 

 

Rx Jitter Tolerance 

Jitter Tolerance is the most used stress test method commonly found in different high 

speed serial interface protocol (PCIe, SATA, SAS, etc.), and produces results similar to 

Figure 11. A controlled sinusoidal jitter (Sj) is introduced into the transmitter clock and 

that sinusoidal jitter is increased in amplitude (green) until a specified bit error rate is 

reached (red). This procedure is repeated over a range of sinusoidal frequencies to 

produce an RX jitter tolerance plot.   

 

 
Figure 11:  Jitter Tolerance Test Results 
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At lower jitter frequencies, the receiver’s clock recovery loop tracks the jitter. However, 

as the frequency increases, the clock recovery loop tracking error increases. Beyond a 

certain frequency, the clock recovery loop has very little effect on jitter introduced into 

the data detection process. The timing margin for the measured bit error rate is the value 

where the curve flattens out. The knee of the curve is an indication of the clock recovery 

loop bandwidth. 

 

Figure 12 stresses the model with Sj of increasing frequency and plots the deterioration of 

eye width.  Note that the knee frequency is similar to that measured in Figure 10.  In the 

model the knee frequency is varied using parameters clock_recovery.step, 

(recovered clock phase step size) and clock_recovery.count (early or late count 

to trigger a phase step) to adjust the loop bandwidth.  A larger step size or smaller count 

value speeds up the clock recovery loop [1][5].  

 

 
Figure 12:  Model’s Response to Sj Frequency 

 

By manipulating the Rx sensitivity and clock recovery jitter parameters in the (Rj, Dj, Sj, 

and DCD) it is possible to map the eye widths in Figure 12 to measured BERs, enhancing 

the correlation of Figures 11 and 12.  This mapping is partially described in [4] and is a 

subject of on-going research by the authors. 

 

Interference Injection 

The Interference Injection stress test couples a differential mode voltage noise onto the 

test pattern signal to characterize the vertical voltage margin and datapath gain response. 

The differential voltage noise is increased until a specified BER is reached and this is 

repeated over a range of frequencies. The process can be thought of as the voltage 

counterpart of the Jitter Tolerance stress test mentioned in the previous section.  

 

From the lab measurement results in Figure 13, the datapath gain variation vs. frequency 

can observed. The datapath gain is inversely proportional to the differential noise 

amplitude. The injected differential noise frequency range is limited due to the range of 

the test equipment. The model’s CTLE curves in Figure 4 is shown inset with injected 

noise frequency range highlighted in grey. The behavior model’s CTLE curve can be 

seen to be the inverse of the differential noise response. Future work to further investigate 

the datapath and receiver decision frequency response is to use a RF signal generator with 
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broadband directional coupler by using a broadband coupler to increase differential noise 

frequency range and implement varying channel lengths to observe the effect on datapath 

gain response. The expected trend is as channel length increases, data path gain increased 

as shown in green in Figure 13. 

 

 
Figure 13:  Interference Injection Plot 

 

 

Receiver Sensitivity 

The bit error rate is a very sensitive function of the transmit amplitude. A 1dB reduction 

in the transmitter amplitude can increase the Bit error rate many orders of magnitude. The 

BERT can provide a wide range of differential input to the receiver. This is useful in 

measuring the receiver sensitivity. If the rise/fall time of the transmitter is much smaller 

than the unit interval of the data and the channel has relatively low distortion, then the 

eye diagram at the receiver decision point will have a lot of timing margin, making the bit 

error rate insensitive to phase noise in recovered clock.  However, when this is not true 

the bit error rate becomes very sensitive to the difference between the signal amplitude 

and the minimum latch overdrive. Therefore, the amplitude at which the signal changes 

abruptly will be an accurate measure of the receiver sensitivity.  The AMI model’s 

Rx_Receiver_Sensitivity (Receiver Sensitivity) parameter can be configured 

based on lab data measured in Table 4. 

 

Tx Amplitude (mV) BER Measured 

900 0 

800 0 

… 0 

200 0 

150 1e-12 

140 8e-12 
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130 2e-11 

120 5e-2 

110 2e-2 

100 1e-2 

Table 4:  Rx Sensitivity Measurement 

 

While the values in Table 4 demonstrate the anticipated abrupt change in BER versus 

amplitude applied, the voltage drop related to losses in the measurement path must be 

subtracted to derive the correct values for Rx Sensitivity in the model.  As the AMI 

model is representative of die behavior, this de-embedding process should also include 

losses in the device’s package parasitics.  If the de-embedding cannot be performed 

directly within the measurement equipment, the process can fairly easily be done using 

simulation.  After de-embedding, Rx Sensitivity values commonly range from 5mV to 

40mV.  

 

Summary 

This paper has demonstrated a process for developing an AMI model of an advanced 

SerDes device using datasheet specifications and available templates.  The resulting 

model is tuned to match silicon behavior using both simulation and measurement.  The 

paper has shown a typical model development scenario, demonstrating common issues 

and appropriate solutions.  As the IBIS Specification [6] does not currently specify 

standardized syntax for all common SerDes AMI model parameters, it is important to 

adapt the parameters shown to use syntax appropriate for unique template suppliers.  

Once done, an accurate AMI model can be created for SerDes’ implementing common 

forms of equalization. 
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Appendix A:  AMI versus SPICE Analysis  

For the reader unfamiliar with the reasons why use and availability of AMI models is 

increasing, this section provides explanation. The following are a few reasons for using 

IBIS-AMI models instead of SPICE models for full channel system signal integrity 

analysis. 

 

1) SPICE models simulate slowly.  Transistor-level models are known to be ~10,000 

times slower than AMI models for Time-Domain analysis [3] and many orders of 

magnitude slower for Statistical analysis.  This difference is one of the reasons why 

AMI modeling was developed, because it enabled a more complete and robust 

analysis process due to its ability to process bit-streams in excess of one million bits 

in a reasonable amount of time. 

2) SPICE models do not capture the complete details of the SerDes.  Specifically, the Rx 

DFE is often missing.  This is typical of silicon-level models, as too many transistors 

are required to implement the complete behavior of a DFE.   

3) SPICE models are usually encrypted. This makes it difficult to adapt or configure the 

model correctly.  Furthermore, global and model-level parameters cause conflicts that 

can cause simulation to crash or become unstable.  

4) SPICE models are overly complex.  This complexity can cause unnecessary support 

from both the model provider and user which results in time and resource overhead 

from both parties. As design cycle becomes shorter, this can easily become a bottle 

neck in the design. 

5) SI tools prefer AMI models.  Although system-level SI tools often provide ways to 

interface with SPICE models - for the reasons stated above - such interfaces are not 

the primary, optimal, and best-supported way to use the tools. 

 


