Behavioral Receiver Modeling

Donald Telian Cadence, PCB Systems Division IBIS Summit: January 31, 2000 rev. 1.0

Cadence Design Systems, Inc.

AGENDA: Behavioral Receiver Modeling

- Who? The Digital Receiver Steps Forward
- Why? Reasons to Use Behavioral Receivers
- What? Comparing Various Receiver Modeling Methods
- How? The Macro-Structure of a Behavioral Receiver
- Where? That is the BIG Question

AGENDA: Behavioral Receiver Modeling

- Who?

The Digital Receiver Steps Forward

- termination modeling
- driver sizing & scaling
- interconnect optimization
- who's left ???

- Why?
- Reasons to Use Behavioral Receivers
- What? Comparing Various Receiver Modeling Methods
- **How?** The Macro-Structure of a Behavioral Receiver
- Where? That is the BIG Question

The Study & Optimization of Digital Interfacing

Next Came Driver Scaling & Tuning

Reference: "Treat pc-board traces as transmission lines to specify drive buffers" EDN September 2, 1993 page 129

 Custom IC & ASIC Design brought the ability to sweep and tune Driver Characteristics

 Set the stage for "IBIS" representation in early '90s

Voltage

IBIS & Tools Allowed Topology Optimization

- Given well-tuned driver technology, constraining "Topology" factors brought more speed advances in the mid '90s
- Buffers acquired
 new dynamic
 behaviors

Behavioral Receiver Modeling

But What About the Lowly Receiver?

AGENDA: Behavioral Receiver Modeling

The Digital Receiver Steps Forward

Reasons to Use Behavioral Receivers

- Simplification
- Performance
- Design Optimization

What?

Who?

Why?

ling

Behavioral Rec

- **?** Comparing Various Receiver Modeling Methods
- **How?** The Macro-Structure of a Behavioral Receiver
- Where? That is the BIG Question

A Receiver is Basically an A - D Converter

Consequently, it simplifies the question of how the (notso-digital) digital signal is responded to by the device.

It's a "digital" problem once again!

Receiver Modeling Allows Greater Performance

- Puts the whole digital transmission into one succinct transaction
- Eliminates awkward signaling hand-off at receiver node
 - double counting
 - extrapolations

 Allows the high-speed problem to be studied at one time

Receiver Modeling Allows Optimization

- What switching function do I need?
- What type of pulses will need to be rejected?
- What sort of propagation characteristics will work?
- What voltages should this all operate at?

In short, the Receiver can be "tuned" just like we're used to doing with the driver and the interconnect !

Behavioral Receiver Modeling

AGENDA: Behavioral Receiver Modeling

The Digital Receiver Steps Forward

Reasons to Use Behavioral Receivers

- Who?
- Why?
- What?

Comparing Various Receiver Modeling Methods

- Methods Available
- Methods Contrasted
- Cadence's Solution

- How?
- The Macro-Structure of a Behavioral Receiver
- Where?
- That is the BIG Question

12

Modeling

Behavior

Methods to Model a Complete Receiver

- Silicon-level SPICE Description
 - too slow, or is it ??
 - too proprietary ?
- Pre-Configured Behavioral Description
 - model has defined structure / construction
 - imitates one thing only, not a design tool
 - too limiting (leads to IBIS' current roadblocks)
- 8 Nodal Behavioral Description
 - allows modeling a receiver's *characteristics*
 - -easily adapts to arbitrary behaviors
 - this is what Cadence implemented

Pre-Configured vs Nodal Behavioral Models

NODAL

1998: The Digital Universal Behavioral Receiver

Working with Intel, on a certain unnamed project, in 1998 Cadence used Nodal Behavioral Modeling to develop the first Digital Universal Behavioral (DUB) Receiver Model

AGENDA: Behavioral Receiver Modeling

Who?

What?

How?

ceiver Modeling

Bel

17

- Why? Reasons to Use Behavioral Receivers
 - **Comparing Various Receiver Modeling Methods**

The Macro-Structure of a Behavioral Receiver

- Block Diagram
- Block by Block Explanation

The Digital Receiver Steps Forward

- Elements Required
- How Fast? How Accurate?
- **?** That is the BIG Question

Where?

DUB Block #1: Low Pass Filter

- Every Receiver Rejects Certain Pulse Spikes
- Simple to Characterize and Implement

DUB Block #2: Switching Function

Switching Function Receiver's Basic Transfer Function

Even Simpler for non-Differential Receiver

DUB Block #5: Intrinsic Delay

- Every Receiver has an Intrinsic (minimum) Delay
- Easily Determined by Measuring Against the Fastest Edge Expected

DUB Block #3: Edge Rate Detection

- Receiver Delay Changes with Input Edge Rate
- Mathematically Determine Derivative of Input Signal
- Use Real-time Derivative to Adapt Propagation Delay

DUB Block #4: Delay Adder

Circuit to Adjust
 Propagation Delay
 Based on Input Slope

Real-time Adaptive
 Delay Line Construction

Delay Adder

What is Needed for Nodal Behavioral DUB?

- Nodal Language
- G (VCCS) and E (VCVS) sources
 - -pwl table driven
 - -equation driven, with derivatives
 - -event driven and time-controlled as well
- Real-time Adaptive Delay Line
- Subcircuit Nesting and Random Node Printing

These are all available in SPECCTRAQuest's MacroModeling language

How Fast is the DUB Method?

Receiver Modeling

M

Model Type	Sim Time	Notes
SPICE	1	Normalized
DUB	1.4	Standard Applications
Intel DUB	2.1	Complex Application

- Values Derived from Receiver Benchmark, not Application
- "Intel DUB" needed additional elements to work right
- For "small" SPICE circuits, "Behavioral" can be slower !!
 - that was the big surprise to this engineer
- However, in the Intel application, the pure receiver delta above was insignificant because the elaborate package model contributed to ~90% of the run-time hit

How Accurate? As Accurate as You Want !

- Picosecond variations for 242 extremely difficult test waveforms
- Average difference was 19 pS (std. dev. of 14 pS)
- Could have matched even closer with more work, if desired

And Here's the Rest of the Story...

- For the Original Intel DUB, other Elements Were Added to Accommodate Unique (Proprietary) Effects
 - this is what caused the extra 50% simulation slow down
- Cadence HIGHLY Recommends that if IBIS Implements Behavioral Receivers that a Nodal Syntax Language Be Used
 - any approach needs to be adaptable to unique situations

AGENDA: Behavioral Receiver Modeling

- Who? The Digital Receiver Steps Forward
- Why? Reasons to Use Behavioral Receivers
- What? Comparing Various Receiver Modeling Methods
- How?

Where?

al Receiver Modeling

- The Macro-Structure of a Behavioral Receiver
 - That is the BIG Question
 - why do answers always raise more questions?

The DUB is All **Dressed Up...**

...and Ready to Go!

The Big Question:

Will the Compelling Application Please Step Forward ????

IBIS Drivers had PCI and Pentium, but who will Rub-A-DUB?