Advanced Techniques for Channel Analysis

Donald Telian – SI Consultant – Siguys.com

December 2009

Presented by...

Donald Telian

Donald Telian has been in the Signal Integrity field for 25 years, and is now serving as an independent Signal Integrity Consultant. Building on many years of SI experience at Intel, Cadence, HP, and others, his recent focus has been on helping customers correctly implement today's Multi-GHz serial links. He has published numerous works on this and other topics. Donald is widely known as the SI designer of the PCI bus and the originator of IBIS modeling and has taught SI techniques to thousands of engineers in more than 15 countries. Donald can be reached at: telian@siguys.com

www.siguys.com

How to Perform Channel Analysis (CA)...

- Faster
- Better
- Deeper

The Basics

- Channel Analysis (CA)
 - 1st introduced mid-2004
 - High-capacity (ie, millions of bits) simulator
 - Used to analyze multi-gigabit (1+ Gbps) serial links
 - Works with S-parameters, 3D vias, AMI, Hspice... models
- Siguys has used CA on dozens of links
 - PCIe, SATA, SAS, QPI, FC, SFI, XAUI, etc., 1-10 Gbps
- We'll focus on tips for using CA in practice
 - This is advanced material, not introductory
 - Assumes familiarity with the tools

To Lean More

- Get up-to-speed at siguys.com/published.html
 - Intro to CA, S-parameters, SerDes modeling
 - CA papers applied to PCIe, SAS, SATA, etc
- Lean more at Advanced CA Training Course
 - Full-day advanced CA training
 - Contact Siguys for more info
- Visit **DESIGN FON 2010**
 - Feb 1-4 2010
 - Siguys/Ericsson/Amphenol 6+ Gbps paper <u>7-TA4</u>

Agenda

• Faster

- Working around "the modeling issue"
- The time-step two-step
- Better
- Deeper

SI Engineer's Creed

I will never fail to produce meaningful data because I do not have a model

It's better to have data with 10% accuracy in an hour than data with 5% accuracy in a month

SerDes Model Options

- 1. Get and AMI or DML model from IC vendor
- 2. Work with vendor's SPICE models
 - a) Import (wrap) model in DML (new 16.3 feature) OR
 - b) Import channel's characterization into CA
- 3. Use Cadence's generic AMI models

New Model Wrapping in 16.3

- Cadence's import (DML wrap) of transistor-level SPICE models
 - Spectre, Hspice, Generic-SPICE

Import Characterization into CA

- Some vendors supply their SerDes models configured to run in an example channel in another simulator (eg, Hspice, Spectre)
- You can adapt that channel to match yours, simulate a step response, and import the Tx and Rx signals as a Characterization for CA
- CA runs as usual, no model wrapping required

Characterization Import Procedure

- 1. Use SigXp to run a "dummy" CA
- 2. Browse to the \char directory
- 3. Replace tx.txt with step input into Tx
- 4. Replace xxx_stim.txt with Rx step response
 - Be sure formatting both txt files matches originals!
- 5. Delete other xxx.sim and xxx_stim_imp.sim
- 6. Run CA as usual on channel from other simulator

🗁 C:\Cadence\Working162\sigxp.run\case0\channel.run\sim1\char 🛛 💽 Go					
	Name	Size 🔺	Туре		
LEAVE	🔚 🤮 channel.cfg	1 KB	Microsoft Office Out		
REPLACE	📳 🗊 tx.txt	5 KB	Text Document		
REPLACE	DESIGN.RX.1_DESIGN.RX.2_diff_DESIGN.TX.1_stim.txt	184 KB	Text Document		
DELETE	DESIGN.RX.1_DESIGN.RX.2_diff_DESIGN.TX.1_stim_imp.sim	231 KB	SigWav Document		
DELETE	DESIGN.RX.1_DESIGN.RX.2_diff_DESIGN.TX.1_stim.sim	251 KB	SigWav Document		
DELETE	DESIGN.RX.1_DESIGN.RX.2_diff_DESIGN.TX.1_stim_imp.txt	362 KB	Text Document		

Using Cadence's Generic AMI

- Configurable FFE, DFE, CDR, etc Models
 - <install>\share\pcb\channelanalysis\ami\toolkit
 - Program Vswing and any number of pre/post taps
 - Adjust imp, edge, die_cap in macromodel portion
 - Mimic behavior of any spec-level Tx
 - Example: scale Vswing x1.2, 2 pre-, 3 post-cursors
 - Pre1=-2%, Pre2=-11%, Main=120%, P1=-50%, P2=-25%, P3=-10%

(ami_ffe <path to Cadence AMI ami_ffe.dll file> (fwd 6) (offset 2) (fwdtaps "160e-12 3 -0.02 -0.11 1.2 -0.50 -0.25 -0.10"))

Time-Step Two-Step

- CA Characterization can be slow due to hard-coded 1.6 pS fixed time-step
 - Works well for *any* channel
- Many channels can be characterized with a larger time-step, especially those with high loss
- Can over-ride time-step with env variable "SetTlsimTimeStep" in pS
 - Makes characterization much faster
- Be careful!
 - Impulse response must be well-sampled

Agenda

- Faster
- Better
 - S-Parameter Handling
 - Via Modeling
- Deeper

The Problem

- Simulated TDR of diff-pair trace solved into S-Params
 - S-parameters solved with different frequency ranges
 - note: you need simulated TDR capability
- Red = Incorrect impedances (DC levels)
- Green = Correct impedances (before/after discontinuity)
- Discontinuity looks (sort of) OK

The Reason

. simulations will be

C:\WINDOWS\system32\cmd.exe C:\Projects09\Cadence\Webinar\Sims\sigxp.run\case0\channel.run>cktlab -LIBPATH ' C:/Cadence/SPB_16.3/share/pcb/chsim'' "C:/Cadence/SPB_16.3/share/pcb/chsim/chsim. lsp" ... found channel directive in file main.spc.... (chnodes (DESIGN.RX.1_DESIGN.RX.2_diff (DESIGN.TX.1_stim (tr 7.5e-011) (tf 7. 5e-011) (primary))) characterizing channel DESIGN.RX.1_DESIGN.RX.2_diff -> DESIGN.TX.1_stim new characterization will take a few minutes ..

WARNING: Circuit contains an S-parameter model with a frequency mange that may be insufficient for the simulation mange of the model should be extended to 1/(2*timestep).

• Heed the WARNING

Especially if you have lots of cascaded S-params

• The Math:

- Timestep = tr/10, therefore
- Frequency_range must be >= 5/tr

The Solution(s)

- Adapt S-params to edge rate
 - Becomes infeasible
- Adapt edge rate to S-params
 - Becomes inaccurate
- Force time-step using SetTlsimTimeStep
 - Becomes inaccurate
 - Characterizations with Sparams likely need this
- Combination of the above
 - Particularly at higher Gbps

Trise-fall	FreqRange		
200 pS	25 GHz		
100 pS	50 GHz		
50 pS	100 GHz		

Time-Step	FreqRange		
20 pS	25 GHz		
10 pS	50 GHz		
5 pS	100 GHz		
1.6 pS	313 GHz		

Use the Right Via Model

- Differential impedance off by 40%
- Differential loss off by 1+ dB

0.6

0.5

5.8

100 Ohms

5.9

Voltage [V]

Agenda

- Faster
- Better
- Deeper
 - Scripting
 - Batching
 - Graphing

Scripting

- Scripts can be recorded in SigXp
 - File -> Script -> Record
 - Saves script.scr file
- Record scripts to
 - Generate topology permutations
 - Change sim corners/preferences
 - Change CA config and settings
 - Run CA char and results

Batching

- With scripts in place, execute batch runs
- sigxp –nograph –s scriptname.scr file.top
 - -nograph = no graphics (ie, do not open GUI)
 - -s = run script scriptname.scr
- Coordinate with Perl, DOS, Unix, etc. commands
- In this way, thousands of CA runs can be generated, configured, and simulated

Graphing

- Each CA run creates chsim.rpt in \results dir
- Automate extraction of key eye parameters
 - Height and width, at any number of bits
- Build table of values, graph in Excel
- Sort by different variables
- Identify trends, sensitivities, dependencies

Eye height UI at n Eye jitter	max height	=	826 mV 0.54 UI 0.06 UI
leport:			
logBER -9 -10 -11 -12 -13 -14 -15	UI 0.82 0.81 0.8 0.79 0.78 0.78 0.78		

In Summary

- CA provides high-capacity simulation
 - For a variety of multi-gigabit data rates
 - For a variety of channels and standards
- We have presented advanced techniques to help your use of CA become faster, better, deeper
- For more info, visit the virtual booth or contact me at <u>telian@siguys.com</u>

THANK YOU

Donald Telian SI Consultant telian@siguys.com