

Industry Bias

Pre-**Hardware**

Post-**Hardware**

- While confirming performance on physical hardware is important
 - And there's lots of investment in this
- There's much to gain figuring out how to do that pre-hardware
 - Challenging since many specs/standards assume post-hardware

DesignCon 2012 Tutorial 2-MP2

Slide 3

Copyright © 2012, SiGuys

Agenda

- System-level
 - Adding Active Models
 - Analysis Techniques and Process
 - Concepts
 - Necessary Building Blocks

DesignCon 2012 Tutorial 2-MP2

Types of Active Models

- Transistor-Level
- IBIS
- IBIS-AMI
- AMS / Verilog-A
- "Spec" Models

- Native to IC design
- Unwieldy with lots of EQ
- Ok for 2-tap Tx & analog Rx
- Handles EQ complexity
- Fast simulation
- Gaining support / momentum
- Highly configurable, but...
- · Valuable, flexible
- Can implement in any format

DesignCon 2012 Tutorial 2-MP2

Slide 8

Technology Comparison

Name	Technology	Pro	Con	Data Sim Pattern Speed		Max #bits
SPICE	timestep nodal equations	uses silicon model	very slow any simulation		very slow	~1,000
Convolution	FFT - iFFT	outputs td waveforms	slower than statisical	any	medium	~10,000,000
Statistical	probability functions	calculation of BER	random data pattern	random	fast	no limit
PDA	worst bit pattern	pattern for SPICE	not widely adopted	finds worst	fast	na

• In the short term, you'll need to understand each solution and work with all of them

DesignCon 2012 Tutorial 2-MP2

Slide 11

Copyright © 2012, SiGuys

SPICE / Conv-Stat Correlation

- Initially, hard to move beyond SPICE .tran
 - Helpful to correlate techniques
 - Convolution/Statistical yields smaller eye from more bits
- Once transitioned, LOTS of new capabilities

DesignCon 2012 Tutorial 2-MP2

Slide 12

Elements in a Serial Link

Transmitter Channel Receiver

All Serial Links use these 3 items to transmit a differential signal

DesignCon 2012 Tutorial 2-MP2

Slide 17

Copyright © 2012, SiGuys

Why Differential Signaling?

- Really, all signals are "differential"
 - Meaning, they are referenced to something
 - Typically "Ground"
- A "Differential Signal" carries its own reference
 - "Ground" is increasingly an inconsistent reference
 - Across systems, cables, split planes, ground bounce
- Other advantages typically cited

- Less crosstalk, pwr/gnd rail noise, EMI
- P/N coupled to each other, less to return path
- Better for long distances at lower cost

DesignCon 2012 Tutorial 2-MP2

Slide 18

Understanding Analog Tx/Rx The simple IO had a set of characteristics Imped (VI), T_r/f (VT) And the differential Tx and Rx do too V_swing, T_rf, V_cm, R_term, Pre-emp% Same Tx/Rx handles multiple standards Often programmable

- 2 bits = One cycle/period, hence
- Maximum Frequency = ½ Data Rate
 - For example, a 6 Gbps link operates at 3 GHz max
 There's way too much confusion about this
- This is further confused by "12 Gbps" links that are actually 4 x 3 Gbps lanes in parallel

DesignCon 2012 Tutorial 2-MP2 Slide 23 Copyright © 2012, SiGuys

Eye = Baseline Channel Metric

- Standard Metrics
 - Rx Eye Height (mV)
 - Rx Eye Width (UI or pS)
- Capture ~million bits
 - Get beyond knee
- Statistical jitter sources
 - Width at 1e12 bits
- Baseline metric
 - Ht/Wd, mV/UI, 156/0.41
- Often, only Tj is given
 - Wd = UI Tj

DesignCon 2012 Tutorial 2-MP2

Slide 25

- Total (Tj)
- Sinusoidal (Sj / Pj)
- Deterministic (Dj)
 Duty Cycle Dist (DCD)
- Random (Rj)
- Various others (?!)

DesignCon 2012 Tutorial 2-MP2

Slide 27

Copyright © 2012, SiGuys

Using Tx Rj in Simulators

- Most tools expect a 1σ/RMS value (Rj_rms)
 - Typically 0.005 UI to 0.015 UI (or, 0.5-1.5 %UI)

r mysical scientists client used the emit of mean squared deviation of a signal from a given baseline or fit. Ideator needed This is useful for electrical engineers in calculating the "AC only "RMS of a signal. Standard deviation being the root mean square of a signal's variation about the mean, rather than about 0, the DC component is removed (i.e. RMS(signal) = 5tloe/(signal) if the mean signals is 0).

- Many datasheets specify a peak-to-peak value (Rj pp)
 - Typically 0.07 to 0.21 UI
- At a BER of 10e-12: Rj pp = 14.069 * Rj rms
- An incorrect Rj value causes inaccurate simulations
 - Very important to enter this correctly

DesignCon 2012 Tutorial 2-MP2

BER = Bit Error Rate

- Related to Rx eye
- System-level measure of link performance
 - Also CER (Character) and FER (Frame)
- Simply put: #Bit_Errors / #Bits
 - Some times called "Bit Error Ratio"
- Targets are very small values
 - Typically 1e-12
 - Or, 1 error in 1 Terabits

BER	Time		
1e-12	5 Minutes		
1e-15	4 Days		
1e-17	1 Year		

- In time, @ 3 Gbps
 - Longer, for higher confidence

DesignCon 2012 Tutorial 2-MP2

Slide 29

Copyright © 2012, SiGuys

Pre-Hardware Simulation

- And then measure/confirm BER
- This is a post-hardware methodology
- To do this in simulation, you need:
 - 1. System-level model of channel (S-params, etc.)
 - 2. Accurate Tx / Rx models with all EQ stages
 - 3. Simulation tools that use the full models and show the Rx eye shape against #bits and/or probability
 - Clear statements from the SerDes Rx vendor regarding eye requirements at the Rx latch and how that relates to a BER
- SerDes vendors typically need to be pushed to provide this data (tie delivery to a PO?)

DesignCon 2012 Tutorial 2-MP2

Slide 3

Parameters in Specs*

Parameter:

Bit Time

V_swing

Rt Rt

Scale Factor

Ramp dt, C_comp

4.3.3. Differential Transmitter (TX) Output Specifications

The following table defines the specification of parameters for the differential output at all Transmitters (IXs). The parameters are specified at the component pins.

Table 4-5: Differential Transmitter (TX) Output Specifications

Symbol	Parameter	Min	Nom	Max	Units	Comments	
UI	Unit Interval	399.88	400	400.12	ps	Each UI is 400 ps +/-300 ppm. UI does not account for SSC dictated variations. See Note 1.	
V _{TX-DIFFp-p}	Differential Peak to Peak Output Voltage	0.800		1.2	٧	$\begin{split} &V_{TX:DIFFp:p}=2^{\star} V_{TX:D+},V_{TX:D} \\ &\text{See Note 2}. \end{split}$	
V _{TX-DE-RATIO}	De-Emphasized Differential Output Voltage (Ratio)	-3.0	-3.5	-4.0	dB	This is the ratio of the VTX DUFFER of the second and following bits after a transitio divided by the VTX DUFFER of the first bit after a transition. See Note 2.	
T _{TX-RISE} , T _{TX-FALL}	D+/D- TX Output Rise/Fall Time	0.125			UI	See Notes 2 and 5.	
Z _{TX-DIFF-DC}	DC Differential TX Impedance	80	100	120	Ω	TX DC Differential Mode Low impedance	
Z _{TX-DC}	Transmitter DC Impedance	40			Ω	Required TX D+ as well as D DC impedance during all states	

*Specs courtesy of PCI Express™ Base Specification 1.0a pages 211 & 212

DesignCon 2012 Tutorial 2-MP2

Slide 35

Tx EQ Balancing • 2' chan, 1-post Tx, Rx eye Under-equalized • 115mV/95pS, 414mV/105pS NOTE: Ht / Wd , **V_jit** / **T_jit** Presence of an Rx DFE Over-equalized changes 144mV/140pS, 170mV/60pS all this Well-equalized 283mV/171pS, 123mV/29pS Minimizing voltage jitter also minimizes time jitter and helps stabilize system DesignCon 2012 Tutorial 2-MP2 Copyright © 2012, SiGuys

The Impulse Response Rx ~60% of Tx, or ~ -5dB loss 6.220 n 5.924 n ISP ~6 nS => #bits to sim = $2^{(6*2.5)} = 2^{15} = 30k (2.5Gbps)$ 2^(6*3.125) ~= 500k (3.125 Gbps) System interconnect's "fingerprint" • Reveals Tx to Rx "loss" (similar to eye or S_21) • Reveals "Interconnect Storage Potential (ISP)" • From which we can determine # bits to simulate ISP detailed in Intel/Cadence DesignCon 2005 paper http://www.siguys.com/resources/2005_DesignCon_New_MGH_Techniques_ISP_CA_PCIe_SATA.pdf DesignCon 2012 Tutorial 2-MP2 Slide 39 Copyright © 2012, SiGuys

Balancing System EQ

- Only Tx can handle pre-cursor ISI
 - Due to foreknowledge of the bit pattern
- Both Tx FFE and Rx DFE handle post-cursor ISI
 - If Rx DFE is available, don't over-do Tx post-cursor EQ
 - · Likely more efficient to intentionally under-equalize
- A clean eye delivered to an Rx pin that has DFE
 - Under-utilizes the Rx DFE
 - Provides the Rx with less signal amplitude to work with
 - · Likely wastes power
- System-level view is needed
 - Concept is not intuitive, as signal at Rx pin is not optimized
 - However, eye at Rx Latch is likely improved 100%
 - "Simulating Large Systems with Thousands of Serial Links"

DesignCon 2012Session 8-WA3

DesignCon 2012 Tutorial 2-MP2

Slide 41

Copyright © 2012, SiGuys

Channel Discontinuities

- Tx transmits a bit many bit times before Rx receives the same bit
 - A 20" 6 Gbps channel contains about 20 bits
 - almost as though the channel has "memory"
- Discontinuities cause some amount of energy to bounce around
 - IC packages, PCB traces, vias, connectors, AC capacitors, cables...
- The remaining energy from previous bits interferes with new ones
 - Often called "Inter-symbol Interference" or "ISI" causes eye closure
- Your task: remove or minimize discontinuities to open eye

DesignCon 2012 Tutorial 2-MP2

Slide 42

Summary

- S-Parameters model passive structures
- System simulation adds active models
- Eye opening is primary metric
- Use of equalization growing
- Post-hardware bias fading
- New process emerging

DesignCon 2012 Tutorial 2-MP2

Slide 45

