Welcome to **DESIGNCON® 2023** WHERE THE CHIP MEETS THE BOARD

Conference

January 31 – February 2, 2023

Santa Clara Convention Center

Ехро

February 1 – 2, 2023

PCIe Gen5 Signal Integrity Implementation – Issues & Solutions

Donald Telian, SiGuys Kevin Rowett, Xconn Technologies Ilya Teplitsky, Hardware Consultant

JAN. 31 – FEB. 2, 2023

SPEAKERS

Donald Telian

SI Consultant / Owner, SiGuys telian@siguys.com | siguys.com

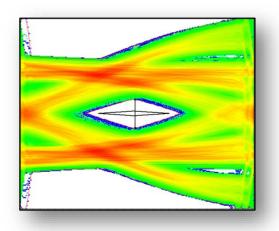
JAN. 31 - FEB. 2, 2023

Building on 40 years of SI experience at Intel, Cadence, HP, and others, his focus is helping customers implement today's highest-speed serial links. With tens of thousands of serial links in production spanning all types of electronic standards and products, he consistently helps his customers migrate to next-generation data rates again and again. Donald is widely known as the SI designer of the PCI bus and the originator of IBIS modeling and has taught SI techniques to thousands of engineers in more than 15 countries. His new book "Signal Integrity, In Practice" brings fresh articulation to the changing practice of SI in the decades ahead.

Kevin Rowett

VP Systems Engineering, Xconn Technologies – Owner, Iron Heart Consulting kevin.rowett@xconn-tech.com | xconn-tech.com

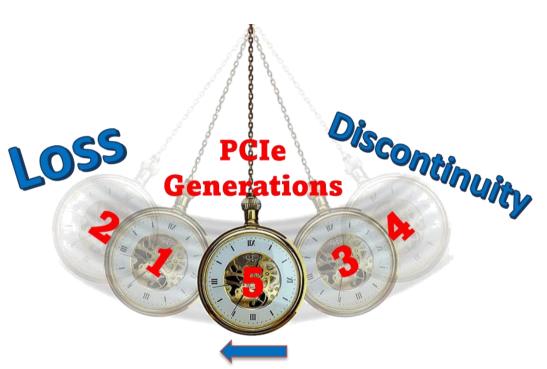
Providing engineering consulting services for technology companies at all stages and sizes, Kevin brings skills in hardware, software, project management, technical communications, and organizational management. Well-known in Silicon Valley, he has worked as an engineering team lead, engineering manager, and executive at many high-tech companies including Tandem, IBM, and Cisco. He has founded six startup high technology companies, including Force10 Networks, Mistletoe Technologies, and Violin Memory.



AGENDA: PCIe Gen5 Signal Integrity

Introduction

- Handling Loss
- Everything is a Discontinuity
- The System Level
- Summary



The PCIe Pendulum Swings

Loss at a cross-roads

• Measure <-> Simulate

- "not yet had a single PCB measurement that confirms IL is as low as we hoped" (page 8)
- Cables to the rescue
 - o PCB loss 10x greater than cable loss

 \circ 2" route ~= 20" cable

JAN. 31 - FEB. 2, 2023

#DesignCor

Consequences of Increasing Data Rate

 36 dB!
 Everything -is a discontinuity

 Stubs are everywhere⁻

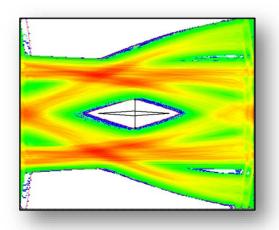
 SI "Cheat Sheet"

> See EDIcon 2022

	Feature	4 Gbps	8 Gbps	16 Gbps	32 Gbps	Unit	SIIP Section	
	Industry/PCIe terminology	Gen2	Gen3	Gen4	Gen5		100	
	Fundamental Frequency	2	4	8	16	GHz	A Practical Handbook for Hardware, SI, FPGA & Layout Engineers	
	Relevant Feature Size	160	80	40	20	mils	4.1, 2.1, 4.x	
ity	what's th <mark>a</mark> t?	traces	vias	conn pads	everything		4.2, 4.3, 4.4	
	Max Stub	64	32	16	>8	mils	2.5, 1.3.3	
	backdring	none?	none? seq-lam 2 Tayers per-layer					
	P/N Matching, static	10	5	2	1	mils	2.3	
	P/N Matching, dynamic			10 in 1.5"	5 in 1"	mils	2.3, 2.4	
)	Route Style	45°	45°	curved	curved		2.4	
	Diff-pair Spacing (XY/Z, min)	25	25	25	30	mils	5.3	
	Insertion Loss (max)	16	22	28	36	dB	2.2, 3.5	
	Min EQ: Tx_FFE/Rx_DFE taps, CTLE	1/0	2 / 1, C	2 / 2, C	2/3,C	#taps	3.3, 3.4, 2.7	
	Length match method	serpei	ntines	irregular spa	aced bumps		2.4	
	Fiberglass weave	spread gla	ss and rotate ir		2.6			
	GND Return Vias (GRVs)	within 30 mils of signal layer transition (see DesCon 2022)					Figure 17	
	Solid GND reference layers	both		2.3, 2.6				

#DesignCon

() informa markets


6

Signal Integrity

In Practice

AGENDA: PCIe Gen5 Signal Integrity

- Introduction
- Handling Loss
- Everything is a Discontinuity
- The System Level
- Summary

JAN. 31 - FEB. 2, 2023

Loss Budgeting: The "Table of Eights"

Imperative to qualify proposed connection scenarios

#	System Component	IL (dB)	Notes	MB IC	MB AIC	AIC Cage	SSD Cage	Retimer!	to Rt	from Rt
1	Host/Switch IC	8	8.4 dB, [3] Figure 8-53	8	8	8	8	8	8	
2	Motherboard Route	8	~5" of trace, plus 2 vias	16	16	8	8	16	16	
3	1 Meter Cable	8	Includes mated connectors			8		8		8
4	0.5 Meter Cable	4	Includes mated connectors				4			
5	Adaptor PCB	4	Route conn to SSD/AIC slot			4	8	8		8
6	Non-Root IC	4	4.2 dB, [5] Figure 8-57	4					4	4
7	Add-in Card (AIC)/SSD	8	9.5 dB, [6] section 4.7.11		8	8	8	8		8
			IL Budget Totals (dB):	28	32	36	36	48	28	28

- Summing works • 36 dB is max, and even simplest connection is 28 dB
- Scenario over budget? Use retimer to partition path because IL is ~linear

Gen5 PCB IL Challenges & Solutions

Our system context:

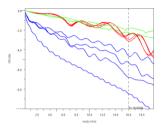
- Managing 500+ Gen5 diff-pairs
- Wide array of 30+ dB connection scenarios
- Dozens of 40-67 GHz VNA measurements across numerous PCBs and Cables

Observations:

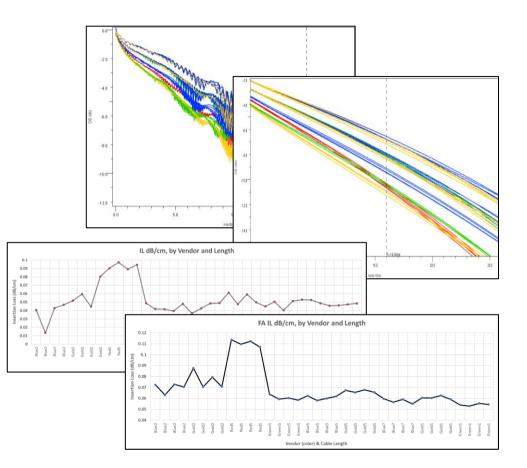
- o Measured IL data always higher than plan
- o Difficult to achieve less than 1.5 dB/inch
- Problems with simulation, measurement, roughness. Microstrip particularly bad
- \circ Can't solve IL problems with materials

Succeeding with Gen5:

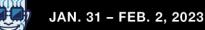
- Keep routes short
- Switch to cables for length
- o Avoid microstrip routes (IL 2-3x high)
- o Trace width 6+ mils when possible
- Specify and use HVLP2 copper or better
- \circ 0.002 < Df < 0.004 at 16 GHz


#DesignCor

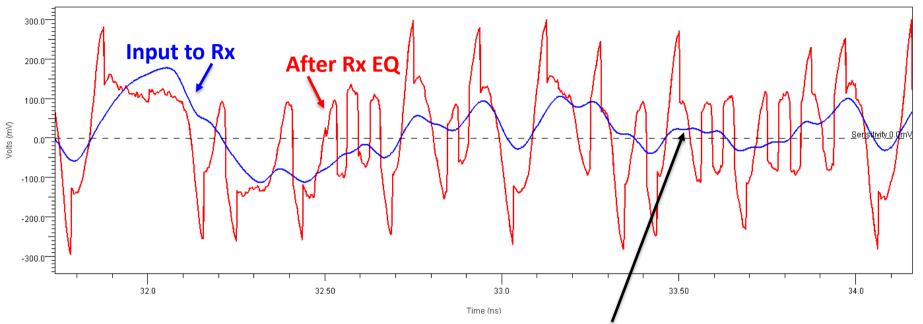
- o Simulate with correlated table-driven models
- $_{\odot}$ Plan for routed IL of 1.2 to 1.5 dB/inch
- ${\scriptstyle \circ}$ Measure, measure, and then measure again


i i

Cables to the Rescue


- Measured dozens of MCIO cables across 4 vendors
- Data extracted/compared using two algorithms
- Good news: Measured IL 10x less than PCB routes
 - 0.15 dB/in from 3 of 4 vendors
 4th vendor's IL is 2x
- Use cables to achieve length / modularity

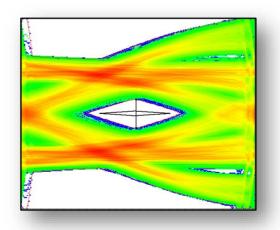
o But qualify cable vendor's IL!


#DesignCo

Gen 5 EQ is Impressive

- EQ perceives slightest change in slope as logic change
- As such, reflections caused by discontinuities must be removed

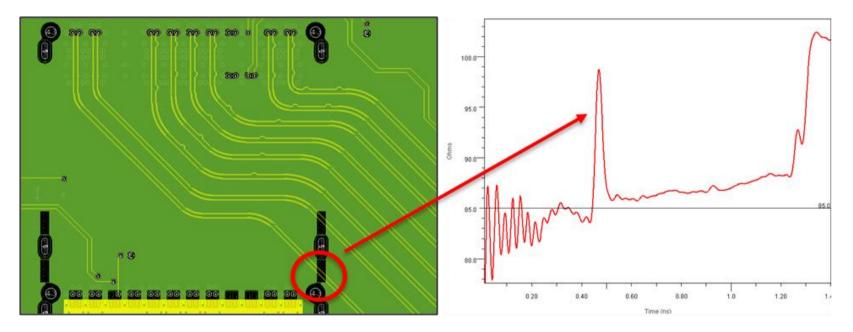
#DesignCon



() informa markets

AGENDA: PCIe Gen5 Signal Integrity

- Introduction
- Handling Loss
- Everything is a Discontinuity
- The System Level
- Summary



#DesignCor

Yes, Everything

• 15 Ohm / 15 ps discontinuity due to small void in GND plane (one side)

JAN. 31 - FEB. 2, 2023

Why Everything is a Discontinuity, and Stubs are Everywhere

Relevant Feature Size (RFS):
 = 0.6*UI(ps) mils ~= 18 mils

o Pads, vias, etc.

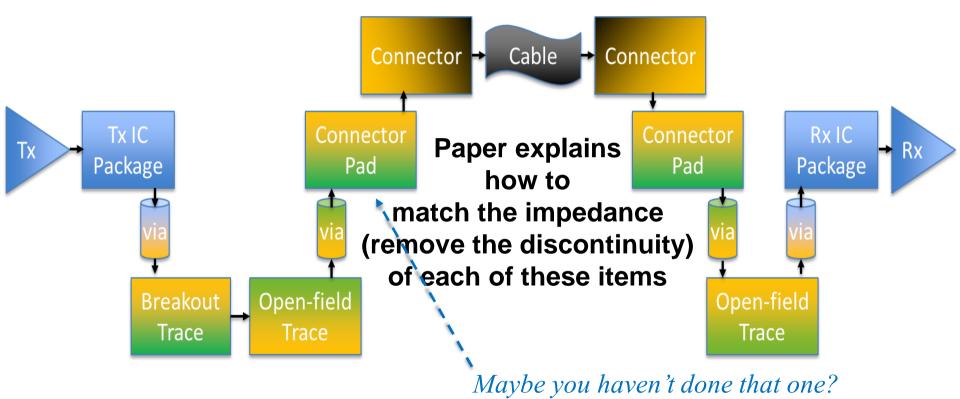
Max stub length:
 = 0.3/Gbps mils ~= 9 mils

o Per-layer back-drilling

What, that's a stub?

o Use SI-clean connectors

Signals must route into connector pads at the end opposite the connector solder leg exit



JAN. 31 - FEB. 2, 2023

#DesignCor

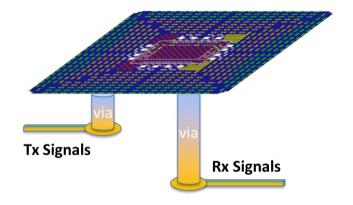
Discontinuities in a Gen5 Signal Path

JAN. 31 - FEB. 2, 2023

Strategies to Reduce Discontinuities

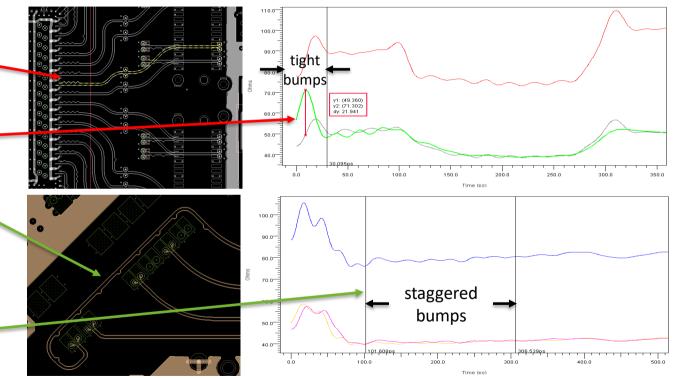
- Tx at BGA edge with short ViP
- Identify/remove p/n skews

o In packages, connectors, cables


- Match vias to trace impedance
- Match connector pad impedances

 $_{\odot}$ Effective to use 2.5D solver and partial voids

- Minimize pad sizes
- Spread glass with 12^o panel rotation
- Compensate and/or ~match inflexible impedances

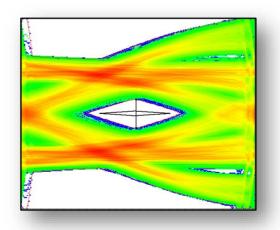

#DesignCor

Measure structures to learn and adjust

Open Field Routes – Length Match Technique

JAN. 31 - FEB. 2, 2023

- Do not use tight repetitive serpentines
 - 22 Ohm SE p/n miss-match
- Stagger bumps irregularly
- Length match bumps <= RFS
- More bumps, yet less variation


#DesignCor

(i) informa markets

AGENDA: PCIe Gen5 Signal Integrity

- Introduction
- Handling Loss
- Everything is a Discontinuity
- The System Level
- Summary

JAN. 31 - FEB. 2, 2023

#DesignCor

Passive Analysis

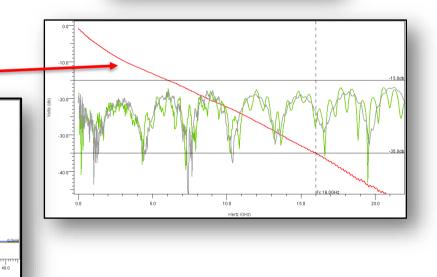
- Min paths for RL, max paths for IL
- Min path: non-root IC to connector

o Our paths averaged 31 dB, stdev 6 dB

80.0

JAN. 31 - FEB. 2, 2023

20.0 30.0


#DesignCor

Max paths: so many in Gen5

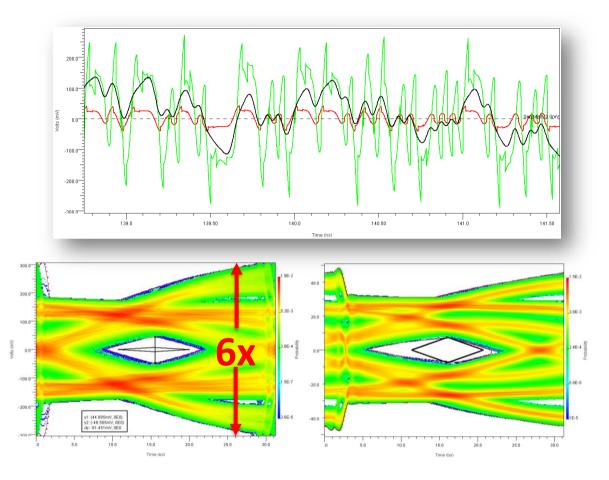
o Linear IL, dampens RL

• Can EQ handle this?

◦ ISI to 10 UI pre, 40 UI post

(i) informa markets

Active Analysis


- PCIe's primary metric
- 35 dB channel

• Rx input applied to:
• Spec Rx EQ, our EQ

- Spec eye ~passes
- Actual component eye is 6x better

 $_{\odot}$ Understand your EQ

JAN. 31 - FEB. 2, 2023

#DesignCor

(informa markets

System Component Design Considerations

Host/Root IC

Minimize package IL and p/n skews, SerDes should exceed spec's min EQ

Motherboard Design

o Shorten routes, follow our trace guidance, use cables to fan out

Add-in Cards

o Implement a minimum IL to mitigate connector discontinuities

Cables

• Work with vendors to confirm cable IL is near 0.15 dB/inch

Retimers

o Use sparingly, after IL budgets and other options are examined and exhausted

#DesignCon

21

(i) informa markets

Lessons from Hardware Bringup

 Practices shared thus far are imperative to get to the bench

o Majority of links worked well - you don't want SI issues post-hardware

What we thought would be hard was easy, and vice versa

Good news:

Bad news:

 $\,\circ\,3^{\rm rd}$ party AICs work well

o Protocol Analyzer (kind of)

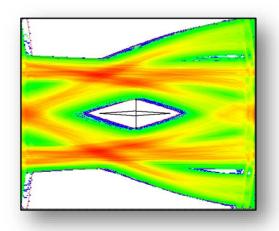
 $_{\odot}$ Host connection, BIOS

 $_{\odot}$ Retimers, and with CXL

#DesignCon

Do your SI up-front, triple check it, then look elsewhere for problems

o Resist the urge to think of SI as "black magic" and the cause of issues



(il

AGENDA: PCIe Gen5 Signal Integrity

- Introduction
- Handling Loss
- Everything is a Discontinuity
- The System Level
- Summary

JAN. 31 - FEB. 2, 2023

#DesignCor

Summary & Conclusions

Gen5's 16 GHz significantly changes PCIe implementation

 $_{\odot}$ Imperative (once again) to budget, simulate, and measure to manage IL

 \circ 1" of PCB trace ~= 10" of cable

Nearly every feature on a PCB can be a discontinuity

o Need to match impedances of increasingly smaller features

Measurement of passives is important

• Be prepared for surprises/iterations in simulate<->measure correlation

Optimal EQ is key, system may not negotiate this automatically

o Quantify how component's EQ exceeds PCIe assumptions and manipulate manually

PCIe Gen5 system implementation becomes robust with proper SI

JAN. 31 - FEB. 2, 2023

MORE INFORMATION

- Much more in Paper
- <u>SiGuys.com</u>,

Xconn-Tech.com

- References at right
- telian@siguys.com
 kevin.rowett@xconn-tech.com

References

- 1. Donald Telian, "Signal Integrity, In Practice A Practical Handbook for Hardware, SI, FPGA & Layout Engineers" book published in 2022 and available at <u>Amazon</u>.
- Compute Express Link [™] webinars, particularly "CXL 2.0 Specification: Memory Pooling" Airing Date: March 23, 2021
- 3. EDIcon 2022 on-line conference session presented by Donald Telian "<u>Signal Integrity Cheat Sheet Data-Rate Driven Design Decisions</u>" recorded October 5 2022.
- 4. Telian D., Camerlo S., et. al. "Moving Higher Data Rate Serial Links into Production Issues & Solutions" DesignCon 2014 technical paper.
- 5. PCI-SIG, "PCI Express® Base Specification" Revision 5.0, Version 1.0, 22 May 2019.
- 6. PCI-SIG, "PCI Express Card Electromechanical Specification" Revision 5.0, Version 1.0, June 9, 2021.
- 7. Telian D., "7 Challenging SI/PI Problems That Have NO Existing Solution" presented at SPI 2016 Italy.
- 8. Beyene W., Hahm YC., et. al., "Lessons learned : How to Make Predictable PCB Interconnects for Data Rates of 50 Gbps and Beyond" published at Signal Integrity Journal, October 2017
- Isola presentation "<u>PCB Material Selection for High-speed Digital Designs</u>" published at Microwave Journal 26 February 2014
- 10. Telian D. (2022 July 12). "7 steps to Successful Serial Links" Signal Integrity Journal RSS
- 11. Telian D. (2022 April 1). 'Which Discontinuities are Small Enough to Ignore?' Signal Integrity Journal RSS
- 12. Telian D. (2007). "Adapting Signal Integrity Tools and Techniques for 6 Gbps and Beyond" [slides 1-33]. SiGuys, CDNLive! 2007.
- 13. Telian D. (2022 June 2). 'Understanding Via Impedance.' Signal Integrity Journal RSS.
- 14. Steinberger M., Telian D., et. al. <u>"Proper Ground Return Via Placement for 40+ Gbps Signaling</u>" DesignCon 2022 <u>best paper</u>
- 15. Steinberger M., Telian D., et. al. <u>"Managing Differential Via Crosstalk and Ground Via Placement for 40+</u> <u>Gbps Signaling"</u> DesignCon 2023 technical paper
- 16. Telian D. (2022 November 1). "Managing PCB Crosstalk" Signal Integrity Journal RSS.
- 17. Telian D., Steinberger M., Katz B., "<u>New SI Techniques for Large System Performance Tuning</u>" DesignCon 2016 technical paper

#DesignCon

JAN. 31 - FEB. 2, 2023

25 (informa markets

Thank you!

QUESTIONS?

Join us again for Advanced Manufacturing Minneapolis

XCONN TĚCH

October 10-11, 2023

JAN. 31 - FEB. 2, 2023

/////

#DesignCon

26 (informa markets